REPORT 1382

'A COMPARATIVE ANALYSIS OF THE PERFORMANCE
OF LONG-RANGE HYPERVELOCITY VEHICLES

By ALFRED J. EGGERS, Jr., H. JULIAN ALLEN,
and STANFORD E. NEICE

Ames Aeronautical Laboratory
Moffett Field, Calif.




-~ .

National Advisory Committee for Aeronautics

Headguarters, 1512 H Street NW., Washington 25, D. C.

Created by Act of Congress approved March 3, 1915, for the supervisibn and direction of the scientific study
of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act
approved March 2, 1929, and to 17 by act approved May 25, 1948. The members are appointed by the President

and serve as such without compensation.

JamEes H. DoourrrLg, Sc. D., Vice President, Shell Qil Company, Chairman

! LeoNARD CarMIicHAEL, Ph. D, Secretary, Smithsonian Institution, Vice Chairman

ALLEN V. Astin, Ph. D, Director, National Bureau of Standards.

PresToN R. BasserTt, D. Sc.

Detrev W. Brong, Ph. D., President, Rockefeller Institute for
Medical Research. .

FrepERICk C. CrawrorDp, Sc. D., Chairman of the Board,
Thompson Products, Inc.

Wirtiam V., Davis, Jr, Vice Admiral, United States Navy,
Deputy Chief of Naval Operations (Air).

PauL D. Foote, Ph. D., Assistant Seerctary of Defense, Re-
search and Engineering.

WeLLINGTON T. Hixes, Rear Admiral, United States Navy,
Assistant Chief for Procurement, Bureau of Aeronautics.

Jerome C. Houwnsaxer, Se. D., Massachusetts Institute of

Technology.

CuarLES J. McCARTHY, S. B., Chairman of the Board, Chance
Vought Aireraft, Inc.

Donavup L. Purr, Lieutenant General, United States Air Foree,
Deputy Chief of Staff, Development. ~

James T. PyLE, A. B., Administrator of Civil Aeronautics.

Francis W. REeicHELDERFER, Sc. D., Chief, United States
Weather Bureau. .

Epwarp V. RicKENBACKER, Sc. D., Chairman of the Board.

Eastern Air Lines, Ine. )

Lovis 8. Rormscuiup, Ph. B, Under Secretary of Commerce for’
Transportation. - o

TroMas D. Warte, General, United States Air Force, Chief of
Staff. .

Hvuer L. Drypen, Pa. D., Director

Jorn W. CrowLEY, Jr., B. 8., Associate Director for Research

Joun F. Victory, LL. D., Ezecutive Secretary

Epwarp H. CuaMBERLIK, Erecutive Officer

Henry J. E. Reip, D, Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.

Surtr J, DEFRANCE, D, Eng., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.

Epwarp R. Suarp, Sc. D., Director, Lewis Flight Propulsion Laboratory, Cleveland, Ohio

WaLter C. WiLLiams, B. 8., Chief, Iigh-Speed Flight Station, Edwards, Calif,

- I



REPORT 1382

A COMPARATIVE ANALYSIS OF THE PERFORMANCE OF
LONG-RANGE HYPERVELOCITY VEHICLES'

By ALFrED J. EGGERS, JR., H. JULIAN ALLEN, and StaNForD E. NEICE

SUMMARY

Long-range hypervelocity vehicles are studied in terms of their
motion in powered flight, and their motion and aerodynamic
heating in unpowered flight. Powered flight is analyzed for
an tdealized propulsion system which approrimates rocket
motors. Unpowered flight 1s characterized by a return to earth
along a ballistic, skip, or glide trajectory. Only those trajectories
are treated which yield the marimum range for a given velocity
at the end of powered flight. Aerodynamic heating is treated
in @ manner stmilar to that employed previously by the senior
authors in studying ballistic missiles (NACA Rep. 1381),
with the exception that radiant as well as convective heat transfer
15 considered in connection with glide and skip vehicles. )

The ballistic vehicle is found to be the least efficient of the
several types studied in the sense that it generally requires the
highest velocity at the end of powered flight in order to attain a
given range. This disadvantage may be offset, however, by
reducing convective heat transfer to the re-entry body through
the artifice of increasing pressure drag in relation to friction
drag—that is, by using a blunt body. Thus the kinetic eneryy
required by the vehicle at the end of powered flight may be
reduced by minimizing the mass of coolant material involved.

The glide vehicle developing lift-drag ratios in the neighbor-
hood of and greater than / is far superior to the ballistic vehicle
in ability to convert velocity into range. It has the disadvantage
of having far more heat convected to 1t; however, it has the
. compensating advantaye that this heat can in the main be
_ radiated back to the atmosphere. (onsequently, the mass of
coolant material may be kept relatively low.

The skip vehicle developing lift-dray ratios from about 1 to 4
is found to be superior to comparable ballistic and ylide vehicles
in converting velocity into range. At lift-dray ratios below 1 it
is found to be about equal to comparable ballistic vehicles while
at lift-drag ratios above 4 it is about equal to comparable glide
vehicles. The skip vehicle experiences extremely large loads,
however, and it encounters most severe aerodynamic heating.

As a final performance consideration, it is shown that on the
basis of equal ratios of mass at take-off to mass at the end of
powered flight, the hypervelocity vehicle compares favorably
with the supersonic airplane for ranges in the neighborhood of
and greater than one half the circumference of the earth. In the
light of this and previous findings, 1t is concluded that the
ballistic and glide vehicles have, in addition to the advantages

usually ascribed to great speed, the attractive possibility of pro-
miding relatively efficient long-range flight.

Design aspects of manned hypervelocity vehicles are touched
on briefly. It 1s indicated that if such a vehicle is to develop
relatively high lift-drag ratios, the wing and tail surfaces should
have highly swept, rounded leading edges in order to alleviate
the local heating problem with minimum drag penalty. The
nose of the body should also be rounded somewhat to reduce
local heating rates in’this region. If a manned vehicle 1s de-
signed for global range flight, the large majority of lift is 0b-
tained from centrifugal force, and aerodynamic lift-drag ratio
becomes of secondary importance while aerodynamic heating
becomes of. primary importance. In this case a glide vehicle
which enters the atmosphere at high angles of attack, and hence
high lift, becomes especially attractive with a more or less
rounded bottom to minimize heating over the entire lower surface.
The blunt ballistic vehicle is characterized by especially low
heating, and it too may be a practical manned vehicle for ranges
in excess of semiglobal if great care is taken in supporting the
occupant to withstand the order of 10 g's maximum deceleration
encountered during atmospheric entry.

INTRODUCTION

It is generally recognized that hypervelocity vehicles are
especially suited for military application becausc of the great
difficulty of defending against them. It is also possible
that for long-range operation, hypervelocity vehicles may
not be overly extravagant in cost. A satellite vehicle, for
example, can attain arbitrarily longrange with a finite speed
and hence finite energy input. E. Sanger was among the
first to recognize this favorable connection betwecen speed
and range (ref. 1) and was, with Bredt, perhaps the first to
exploit the speed factor in designing a long-range bomber
(ref. 2). This design envisioned a rocket-boost wvehicle
attaining hypervelocities at burnout and returning to earth
along a combined skip-glide trajectory. Considerable at-
tention was given to the propulsion and motion analysis;
however, little attention was given to what is now con-
sidered to be a principal problem associated with any type
of hypersonic aircraft, namely that of aerodynamic heating.
In addition, the category of expendable vehicles, perhaps
best characterized by the ballistic missile, was not treated.

Since the work of Sanger and Bredt there have been, of
course, many treatments of long-range hypervelocity vehi-

! Bupersedes NACA Technical Note 4046 by Alired J. Eggers, Jr., H. Jullan Allen, and Stanford E. Neice, 1957,
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cles in which the propulsion, motion, and heating problems
have been studied in considerable detail. However, these
analyses have been devoted in the main to particular designs
and are not intended to reveal, for example, the relative ad-
vantages and disadvantages of ballistic-, skip-, and glide-
type vehicles. Furthermore, it appears that the extent to
which these vehicles can compete on a simple efficiency basis
with lower speed aircraft of either the expendable or non-
expendable type has not been well established.

It has therefore been undertaken in the present report to
make a comparative analysis of the performance of hyper-
velocity vehicles having ballistic, skip, and glide tra]ectorles
An idealized propulsion system, whose performance approxi-
mates that of rocket motors, is assumed. The motion
analysis is simplified by treating, for the most part, only
optimum trajectories yielding the maximum range for
given initial kinetic energy per unit mass in the unpowered
portion of flight. Aerodynamic heating is treated in a man-
ner analogous to that employed by the senior authors in

studying ballistic missiles (ref. 3) with the exception that

radiant heat transfer, as well as convective heat transfer, is
considered in the treatment of glide and skip vehicles. The
cfficiencies of these vehicles are compared with supersonic
aircraft with typical air-breathing power plants.

NOTATION
A reference area for lift and drag evaluation, sq ft
c specific heat of vehicle material, ft-1b/slug °R
Cp drag coefficient
CL lift coefficient
Cr - skin-friction coefficient
(054 " equivalent skin-friction coefficient (see eq. (40))
c, specific heat of air at constant pressure, ft-1b/slug
°R
¢ specific heat of air at constant volume, ft-Ib/slug
°R
D - drag, 1b
e Naperian logarithm base
E performance efficiency factor (see eq. (85))
f general functional designation
F,F, functions of AJ, (see egs. (74) and (80))
aq ratio of maximum deceleration to gravity

acceleration (32.2 ft/sec?)

g acceleration due to force of gravity, ft/sec?

h convective heat-transfer coefficient, ft-1b/ft? sec
°R

H convective heat transferred per unit area (unless
otherwise designated), ft-1b/ft*-

I specific impulse, sec

J range parameter for glide vehicle (see eq. (68))

k Stefan-Boltzmann constant for black body
radiation (3.7 X107 ft-Ib/ft? sec °RY)

K constant in stagnation point heat-transfer equa-
tion, slug ¥*/ft (see eq. (44))

L lift, Ib

m mass, slugs

M Mach number

Q convective heat transferred (unless otherwise

designated), ft-1b
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distance from center of the earth, ft
radius of curvature of flight path, ft
radius of earth, ft

range, {t

distance along flight path, fb
surface area, sq ft

time, sec -

~temperature (ambient air temperature unless

otherwise specified), °R

velocity, ft/sec

ratio of velocity to satellite velocity

velocity of satellite at earth’s surface (taken as
25,930 ftfsec) . 7 -

weight, 1b : r

vertical distance from surface of earth ft

angle of attack, radians unless otherwxse speci-
fied

constant in density-altitude relation, (22,000 ft~1;
see eq. (15)) :

ratio of specific heats, C,/(',

semivertex angle of cones, radians unless other-
wise specified

increment

lift-drag efficiency factor, (see cq. (B27))

angle of flight path to honzontal radians unless
-otherwise specified

leading edge sweep angle, deg

air density, slugs/cu ft (p,=0.0034)

nose or leading-edge radius of body or wing, ft

partial range, radians

total range, radians

remaining range ($— ¢), radians

Shpscripts

conditions at zero angle of attack

conditions at end of particular rocket stages

conditions at point of maximum average heat-
transfer rate : ’

average values

conditions at point of maximum local heat-
transfer rate

convection

effective values

conditions at entrance to earth’s atmosphere

conditions at exit from earth’s atmosphere

conditions at end of powered flight

initial conditions

local conditions

ballistic phases of skip vehicles

total number of rocket stages

pressure effects

pay load

recovery conditions

radiation

stagnation conditions

total values

wall conditions
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ANALYSIS
' GENERAL CONSIDERATIONS

In the following analysis of long-range hypervelocity
vehicles, only flight in planes containing the great circle
arc between take-off and landing is considered. The flight
is thought of in two phases: (a) the powered phase in which
sufficient kinetic energy, as well as control, is imparted to the
vehicle to bring it to a prescribed velocity, orientation, and
position in space; and (b) the unpowered phase, in which the
vehicle travels to its destination under the influence of
gravity and aerodynamic forces.

The analyses of motion and aerodynamic heating during
unpowered flight will, of necessity, differ widely for the
several types of vehicles under consideration. On the other
hand, motion in the powered phase is conveniently treated
by a method common to all vehicles. The study of powered
flight and its relation to range is therefore taken as a starting
point in the analysis.

’

POWERED mcri'r AND THE BREGUET RANGE EQUATION

In this part of the study, the following simplifying as-
sumptions are made: (a) aerodynamic heating can be
neglected on the premise that high flight speeds are not
attained until the vehicle is in the rarefied upper atmosphere;?
(b) sufficient stability and control is available to provide
proper orientation and positioning of the vebicle in space;
(c)-the distance traveled while under power is negligible by
comparison to the overall range; and finally, (d) the thrust
is very large compared to the retarding aerodynamic and
gravity forces. In terms of present-day power plants, the
last assumption is tantamount to assuming a rocket drive
for the vehicle.

The velocity at burnout of the.first stage of a multistage
rocket (or the final velocity of a single-stage rocket) can then
be expressed as (see, e. g., ref. 4):

| 8
where the initial velocity is taken as zero. In this expression,
m, and m,, represent the mass of the vehicle at the beginning
and ending of first-stage flight, and T},zV,l/Vs where V=
vgr,=25,930 feet per second is the satellite velocity at the
surface of the earth. The coefficient g is the acceleration due
to gravity and is, along with the specific impulse I, con-
sidered constant in this phase of the analysis. The final
velocity of the vehicle at the end of the AV stages of powered
flight can be expressed as

= == ’4 m my /my i

V=Vy=2l1n| ([ 2 . .. (M

T [GG) G e
where the initial mass of any given stage differs from the
final mass of the previous stage by the amount of structure,
etc., jettisoned.

Now let us define an equivalent single-stage rocket having
the same initial and final mass as the N-stage rocket and the
1 This assumption is in the main permissible. A possible exception occurs, however, with

the glide vehicle for which heat-transfer rates near the end of powered flight can be comparable
to those experienced in unpowered gliding flight, .

same initial and final velocity. There is, then, an effective

(“l )
I

- ln ﬂ) ln_‘_) C
L=r "/ A\

In ﬂ) @
m,
whereby equation (2) can be written as
Pefn(2)
T/,—- Vs In m, (4)

The effective specific impulse 7, is always somewhat less
than the actual specific impulse, but for an efficient design
they are not too different. Throughout the remainder of
the analysis the effective impulse I, will be used.

Equation (4) might be termed the “ideal power plant”
equation for accelerated flight because, when considered in
combination with the assumptions underlying its develop-
ment, attention is naturally focused on the salient factors
leading to maximum increase in velocity for given expendi-
ture of propellant. Thus the thrust acts only in over-
coming inertia forces, and the increase in vehicle velocity
is directly proportional to the exhaust velocity (gI) of the
propellant. ) . |

Now we recognize that an essential feature of the hyper-
velocity vehicles under study here is that they use their
velocity (or kinetic energy per unit mass) to obtain range.
For this reason, equation (4) also constitutes a basic per-
formance equation for these vehicles because it provides
a connecting link between range requirements and power-
plant. requirements. :

In addition to comparing various types of hypervelocity
vehicles, our attention will also be focused upon comparison
of these vehicles with lower speed, more conventional types
of aircraft. For this purpose it is useful to develop an
alternate form of equation (4). We observe that the
kinetic energy imparted to the vehicle is

ym,V,?

This energy is equated to an effective work done, defined as
the product of the range traveled and a constant retarding
force. (Note that the useful kinetic energy at the end of
powered flight is zero.) This force is termed the “effective
drag” D,. Thus

DR=3}m,V,2 (5)

where R is flight range measured along the surface of the
earth. Similarly, we may define an “effective lift” L,
equal to the final weight of the vehicle '

’

L‘z Wf= meg

from which it follows that equation (5) may be written as

(L v/

2=(3), 35

where (L/D), is termed the “effective lift-drag ratio.”
Combining equations (4) and (6), we obtain

~' _Rf(%). Lv.1a ()

(6)

@
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- and represents an

Y
V=5 ®

where

“effective’” flight velocity of the vehicle.

. Equation (7) will prove useful in comparing hypersonic
vehicles with conventional aircraft because of its analogy
" to the Breguet range equation,

_Livm(™y
R=7 IV1n (m, ©)

It will also prove useful to have equation (7) in the dimeni-
sionless form obtained by dividing through with 7, the
radius of the earth. In this case we have

__R_ L b7 gIe) (m'f
Q—E—(D)cIc(Vs In m/)
where & is the range in radians of arc traversed along the
surface of the earth.

(10)

MOTION IN UNPOWERED FLIGHT

Ballistic trajectory.—In studying the motion of long-range
vehicles in this trajectory, advantage is taken of the fact
that the traverse through the earth’s atmosphere generally
forms only a small part of the total trajectory. Therefore,
the deflection and deceleration encountered in the re-entry
phase (discussed in detail in ref. 3) are neglected in the
computation of the total range and rotation of the earth is
neglected in this and all other phases of the analysis. With
the added simplification that the contribution to range of
the powered phase of flight is negligible, the ballistic tra-
jectory becomes one of Kepler’s planetary ellipses, the
major axis of which bisects the total angle of arc & traveled
around the earth. For the trajectories of- interest here
(V,<1), the far focus of the ellipse is at the mass center
of the earth. For purposes of range computation, then, the
ballistic vehicle leaves and returns to the earth’s surface
at the same absolute magnitude of velocity and incidence
(see sket(h) o : -

_.- Elliptical orbit

,--Earth’s surface

The expression for range follows easily from the equation
of the ellipse (see, e. g., ref. 5) and can be written
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®=I_?=,) tan-! sin §, cos 8,

- To

=,— 0820, ()

VJ:

where the angle of incidence 8, is considered positive. In
order to determine the optimum trajectory giving maximum
range for a given velocity V,, equation (11) is differentiated

“with respect to 8, and equated to 0, yvielding

-, V2
V5 =¥: =|—tan?,

R - (12)
U e tmr—10,

To .

Equations (11) and (12) have been employed to determine
velocity as a function of incidence for various values of
range and the results are presented in figure 1. The ‘‘mini-
mum velocity line” of figure 1 corresponds to the optxmum
trajectories (egs. (12)).

The effective lift-drag ratios can (\nsﬂ\ be calculated for
optimum ballistic vehicles using equation (6) in combination
with the information of figure 1. The required values of
(L/D), as a function of range are presented in figure 2.

Skip trajectory.—This trajectory can be thought of asa
succession of ballistic trajectories, each connected to the
next by a ‘“‘skipping phase” during which the vehicle enters-
the atmosphere, negotiates a turn, and is then ejected from
the atmosphere. The motion analysis for the ballistic
missile can, of course, be applied to the ballistic phases of
the skip trajectory. It remaiis, then, to analyze the
skipping phases and to combine this analysis with the bal-
listic analysis to determine over-all range.

To this end, consider a vehicle in the process of executing
a skip from the atmosphere (see sketch).

+

/ L

..~ Outer reach of

> — ~ otmosphere
// D\ — -
/'\ -~ ~

,~Earth's surface

The parametric equations of motion in directions perpen-
dicular and paralle] to the ﬁight path s are, respectively,

pV A—mg cos =" my: ,
e (13)

—Cp —plzf—A-i—mg sin f=m (id!{,

CL——

where 7, is the local radius of curvature of the flight path, 8 is
the local inclination to the horizontal (positive downward),
p is the local air depsity, and Cp and C)p are the lift and drag
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Ficure 1.— Variation of velocity with inecidence angle for various
values of range of ballistic vehicle.

coefficients, respectively, based on the reference area, A4, of
the aircraft.

In the turning process, aerodynamic lift must obviously
predominate over the gravity component, mg cos 8. By anal-
ogy to the atmospheric re-entry of ballistic missiles (see ref.
3), aerodynamic drag generally predominates ¢cver the gravity
component, mgsin §. Moreover, the integrated contributicn
to velocity of this gravity component during descent in a skip
is largely balanced by an opposite contribution during ascent.

16

~

Effective Lift-drag ratio, (L),
[

N

0] - 2 4 6 i 8
P Range parameter, ®

Fi1GURE 2.— Variation of effective lift-drag ratio with range for optimum
ballistic vehicle.

20 T I
V218,670 ft/sec Var=12,480 f1/sec ~ /
Var 212,350 fr/se7
16
T
o 12 =
X
E
g /
28
g
Maximum tift
4———accelerction =28.5g
Neglecting gravity
————— Including gravity
0 20 40 60 80 10C

Distance along earth's surface, feet x 1074

Ficure 3.—Trajectory of the first skipping phase for a skip vehicle
with a lift-drag ratio of 2 and a total range of 3440 nautical miles
(e=1).

For these reasons we will idealize the analysis by neglecting
gravity entirely. This approach is analogous to the classical
treatment of impact problems in which all forces exclusive of
impact forces (aerodynamic forces in this case) are neglected
as being of secondary importance. Gravity is shown to be
of secondary importance in figure 3 where the trajectory re-
sults obtainable from equations (13) and (14) are presented
for the first skipping phase of an L/D=2, &=1 skip missile.
With gravity terms neglected, equations (13) reduce to

! CwoVia=—myr
- ({3

1 dv a9
—3 CopV?A=m 7

where de/ds%-g— to the accuracy of this analysis.
[
Now we assume an isothermal atmosphere, in which case

p=p.e ™" (15)

where p, and 8 are constants, and y=(r —r,) is the altitude
from sea level (see ref. 3 for discussion of accuracy of this as-
sumption). Noting that dy/ds= —sin 8, we combine the first
of equations (14) with equation (15) to yield

%%-4; e~™dy=sin # do 16)
This expression can be integrated to give
CLPOA -8y — .
S8m e F=cos §—cos 0,-, (17)

where ois t 1 as zero at the altitude corresponding to the
effective “outer reach” of the atmosphere. Equation (17)
points out an important feature of the skip path; namely,

@ ek @ P
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“cos Bis a single-valued fusction of altitude. Since 6 proceeds
from positive to negative values, it is evident that

ael,_l=—0u,‘ (18)

- where the subscripts en and ez refer to atmospheric entrance

" n refer to successive ballistic phases of the trajectory. Now
- since ' :

and exit conditions, respectively, and the numbers n—1 and

av_
dt

equdtions (14) may be combined to obtain
1dV2_ V* dg

dV_1dV?

V&~2d

2% LD& (19)
which, for constant L/D, can be ir;tegrated to yield
v., emTle
Fr_— 20
Vo i/p (20)

With the aid of equation (18), this expression may be
written

Vany
—e LD

Ve,
Vf"-—l

@y

which relates the velocities at the beginning and end of a skip
to the lift-drag ratio and the entrance angle of the vehicle to
the earth’s atmosphere. From equation (18) it follows
further that the entrance angle for each skip in the trajectory
is the same, so that :

Oen,=ben, =

and hence equation (21) becomes
2
1% - et
T, ) L/D

- Vo, (22)

We now combine this result of the skip analysis with that
of the ballistic analysis to obtain the total flight range.
From equation (11) the range of the nth ballistic segment of
the trajectory is

ea=2 tan™! (23)

sin 6, cos &,
275
~cos? g
Vez‘) 4

Consistent with the idealization of the skipping process as an
impact problem, we neglect the contribution to range of each
skipping phase so that the total range is simply the sum of
the ballistic contributions. From equations (22) and (23)
this range is then

¢=§=2¢,=2>f‘, tan~!

o n=l n=]
- —v_,;

From this expression we see that for any given velocity
at the end of powered flight there is a definite skipping angle

sin 8, cos 6,
110y

e LID

(24)

—cos? 4,

COMMITTEE FOR AERONAUTICS

which maximizes the range of an aircraft developing a
particular lift-drag ratio. These skipping angles have been
obtained with the aid of an IBM CPC, and the corresponding
values of V, as a function of range for various L/D are
presented in figure 4. Corresponding values of (L/D), have
been obtained using equation (6) and the results are shown

in figure 5.
10 % o [
'i; 6 /] //A¢ :
sl

r

0 i 2 3 4 5 6 7
Ronge parameter, @

Ficure 4.—Variation of velocity with range for various values of
lift-drag ratio for skip vehicle.

Glide trajectory.—The trajectory of the glide vehicle is
illustrated in the accompanying sketch. As in the previous
analyses, the distance coverad in the powered phase will be
neglected in the determination of total range.

L-
173
v 7 .
g
‘l
\ W =
- (- \\\\\ —’,,r‘EOﬁh's surfoce
W
¢
e y-8
A /
—-}. v

The parametric equations of motion normal and parallel
to the direction of flight are the relations of equations (13)
rewritten in the form

' mV?

L—mg cosf=—
rc

(25)
av

—D-+mgsing=m 7
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F1GURE 5.—Variation of effective lift-drag ratio with range for varfous
values of aerodynamie lift-drag ratio of skip vehicle.

Under the assumptlon of small inclination angle 8 to the

horizontal (thus cos 8 =1, sin §=48), constant gravity accelera-

. . r
tion{e., —=
) 7,

1); and noting the following relations

av_ VdV 14717
dt ds 2 ds )
1 —48
_(l_‘p;_cose~_l .
) ds r r, J

equations (25) can be written in the forms

_my?

_'e

2(10_}_

27

1

dv? '
D——§ m —ds—-i- mg @

Dividing the first of equations (27) by the second vnelds the
following dlﬁ'erentlal equation

1 L4V v . V’
{l(l—.D_ >+(2D ds .zds Ty

But, as is' demonstrated in A'ppendl‘c A, the terms é g8 and

=0 (285

483423 —50—-2

-1

%% do may be neglected so that equation (28) reduces to

ds
AL 2

Frany) 71 +L/D (29)

Since
V82=gro

L
equatlon (29) can be mteorated for constant 7 to give the

velocity in nondimensional form as

,V’=1—(1—V2)e% ’ (30)

This expression gives velocity as a function of range for what
Sanger (ref. 2) has termed the equilibrium trajectory—that

is, the trajectory for which the gravity force is essentially
balanced by the aerodynamic lift and centrifugal force, or

L 12
. W»-I—V 31)
It follows from equation (31) that velocity can be expressed

in the form
1

CLAVS P
" 2mg

'Vz (32)

Now it is intuitively obvious that as the maximum range is
approached, L/W—1 and hence V* becomes small compared
to one (see cq. (31)) In this event it follows from equation
(30) that the maximum range for the glide vehicle is given by

*= r—=2 (D)l (1—V,)

The relation between velocity and range has been deter-
mined with equation (33) for various values of L/D and the
results are presented in figure 6. Corresponding values of
(L/D), have been obtained using equamon (6) and are
presented in figure 7.

These considerations complete the motion analysis and
attention is now turned to the aerodynamic heating of the

(33)

_several types of vehicles under conmderanon
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FiGURE 6.—Variation of velocity with range for various values of
lift-drag ratio of glide vehicle.
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20 - heat transfer from the surfade should not appreciably in-
fluence convective heat transfer to a vehicle. Therefore,
4 8 alleviating effects of radiation are reserved for attention in
/100 /° the discussion of particular vehicles later in the paper. This

o

Effective tiff-drag rotio, (£/D),

0 4 6 8
Ronge parometer, .

FiGURE 7.—Variation of effective lift-drag ratio with rangé for various
values of acrodynamie Jift-drag ratio of glide vehicle.

HEATING IN UNPOWERED FLIGHT .

General considerations.—Three aspects of the aerodynamié
heating of hypervelocity vehicles will be treated here; namely,

1. The total heat input B T

2. The maximum time rate of average heat input per unit

area

3. The maximum time rate of local heat input per unit

area

Total heat input is, of course, an important factor in deter-
mining over-all coolant weight, whether the coolant be solid
(e. g., the structure), liquid, or gas, or a combination thereof.
The maximum time rate of average heat input per unit area
can determine peak average flow rates in the case of fluid
coolants and may dictate over-all structural strength in the
event that thermal stresses predominate.

Excessive local heating is, of course, a serious problem with
hypervelocity vehicles. This problem may vary depending
upon the type of the vehicle. Thus, for the ballistic vehicle,
an important local “‘hot spot” is the stagnation region of the
nose, while for the skip or glide vehicle attention may also be

~ focused on the leading edges of planar surfaces used for de-

veloping lift and obtaining stable and controlled flight. In
this analysis attention is, for the purpose of simplicity, re-
stricted to the “hot spot” at the nose. In particular, we
consider the maximum time rate of local heat input per unit
area because of its bearing on local coolant flow rates and
local structural strength.

It is undertaken to treat only convective heat transfer at
this stage of the study. As will be demonstrated, radiant

analysis is further simplified by making the assumptions that

1. Effects of gaseous imperfections may be neglected

2. Shock-wave boundary-layer interaction may be neg-

lected -

3. Prandtl number is unity

4, Revnolds anslogy is applicable
These assumptions are obviously not permissible for an accu-
rate quantitative study of a specific vehicle. Nevertheless
they should not invalidate this comparative analysis which is
only intended to yield information of a general nature regard-
ing the relative merits and problems of different types of
vehicle (see ref. 3 for a more complete discussion of these
assumptions in connection with ballistic vehicles).

In calculating convective heat transfer to hypervelocity
vehicles, the theoretical approach taken in reference 3 for
ballistic vehicles is, up to a point, quite general and can be
employed here. Thus, on the basis of the foregoing assump-
tions, it follows that for large Mach numbers, the difference
between the local recovery temperature and wall temperature
can be expressed as’ -

172

) (TI—TW I=§Z'y:, (34)

It is clear, however, that the walls of a vehicle should be
maintained sufficiently cool to insure structural integrity.
It follows in this case that the récovery temperature at
hypervelocities will be large by comparison to the wall tem-
perature and equation (34) may be simplified to read

. -

Tr,=§6; (35)

To the accuracy of this analysis, then, the convective heat
transfer is independent of wall temperature. Therefore, as
previously asserted, radiant heat transfer should not appre-
ciably influence convective heat transfer and the one can be
studied independently of the other,

Now, according to Reynolds analogy, the local heat-
transfer coefficient h; is, for a Prandt] number of unity, given
by the expression

hi= % CF,C P! Vi (36)

where Cf, is the local skin-friction coefficient based on con-

ditions just outside the boundary layer. With the aid of
equations (35) and (36) the time rate of local heat transfer
per unit area, - ;

%Pt—]=hz(Tr—Twh (37)
can be written as
2
dH V (38)

U0, (Cr,Copi V)
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Equation (38) can be integrated over the surface of a body | For the “relatively light missile,” which is of principal interest

to yield the time rate of total heat input as follows

dQ_ (" dH

LA 72 Vol
dt dt dS p{' Op S (39)
wherein (7, is set equal to (', and
0'=—1f cr, 2 Vias (40)
F S s L4 p V

The parameter (" is termed the “‘equivalent skin-friction
coefficient” and will be assumed constant at a mean value
for a particular vehicle. From equation (39) we can obtain
two alternate forms which will prove useful; namely, the
altitude rate of total heat input defined by (note that dy is
negative for dt positive) .

v sm 8dt  4sind
and the range rate of total heat input defined as f
dQ _ 1 _dQ_,V¢/S )
d(r.) Vcoq 6'dt 4cos@

The total heat input may be obtained by integration of
equations (39), (41) or (42), depending upon the particular
variable used. ,

The time rate of average heat input per unit area may be
obtained from equation (39) as

dHa, 1dQ_ I

=53 —1°VC

(43)

Consider next the local convective heat transfer in the
region of the nose. The time rate of local heat input per
unit area was determined in reference 3 under the assump-
tions that viscosity coefficient varies as the square root of
the absolute temperature, and that flow between the bow
shock wave and the stagnation point is incompressible. In
this case 1t was found that .

g

where K=6.8X10"% A more detanled study of stagnation
region flow, including effects of compressibility and dissoci-
ation of air molecules (ref.-6), shows that the constant, K,
should have a value more like twice the above value at the
hypervelocities of interest here.
With these relations we are now in a posmon to study
the heating of the several types of vehicles of interest.
Ballistic vehicle.—The heating for this case has aheady
been analyzed in reference 3. Only the results will be glven
here.
The ratio of the total heat input to the initial kinetic
energy was found to be
Cpo,d )
“Bmsin L7

(44)

1q ’S
%m /’_ 2(

l—e¢ 45)

here,
- Cpp,A
€ BAmsin 8, <<1 (46)
and equation (45) reduces to
_Q _1G/8 :
IV 2 Opd - @

The time rate of average heat input per unit area was
found to be

3Cpo, A By

dHan _1 @_CP va', —gye—%n sin 8, (48)
S adt 4
which has the ma‘cimum value
dHtw dHaa ﬁ (7F 3 3
)m 7 ), 6o C'DA sin 4, (49)
at the altitude
3Cpp.A .
=3 l <2Bm sin 0,) (50)

Equation (49) applies, of course, only if the altitude, y,, is
above ground level. If the value of y, is negative then the
maximum average heating rate will, of course, occur at sea
level. . '

The time rate of local heat input per unit area to the stag-
nation region of the nose was found to be

By 3Cpn,A

dH, Po1ra” T

- By -
Fo1rs 28m sin 8 (61)
7y =K ~ Vie “e 4
having & maximum value of
Bm sin 0, 0,
( )ma: ?eC’DoA Vi (52)
occurring at the altitude
___1 3C DPoA -
\ V=3 In <—ﬁm sing, (53)

If the value of y, is negative, then the maximum value
occurs at ground level.

Skip vehicle.—With the aid of equamon (17), the density at
any point in a given skipping phase is found to be

e 28m '
p=pge = A (cos §—cos §,) (54)
where it is to be recalled that ¢,,=4,.
velocity for constant L/D is, from equation (19),

0,-0

V=V, P

(55)

The corresponding

- 4
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By subsututlon of equations (54) and (55) into equ&mon (39),
theé time rate of total héat input at any point in a skipping
phase can be expressed as follows:

dQ 1 CGy/'S Bm
dt 2 CpA LID

3(8,—8)
L/D

V..2 (cos §—cos 6)) e— (56)

Now recalhng that ds/dt="1, the first of equations (14) may
be combmed with equation (17) to yield

dé =—gV (coso cos 0,)

ar (57
and we note further from equation (22) that
- > g ~n—1) —L
(" cn/n (t n:) e LID (58)

(‘ u)u-l ‘-'

W1t11 the aid of equatlons (57) and (58), equsmon (56) can
be integrated to give the total heat mput for a given skipping
phase, thus we obtain

Qn _l CF'*S -
FmVA 3 Opd \1—¢ (59)
The total heat input for the entire trajectory can be ob-
tained by summing up the heat inputs for each separate
qklppmg phase Performing this operatlon yields

'i‘,Q,=

168 #,\ &~V 57
g'nV’ = TV, 5(»;4 (1 LII)) : L/D (60)
or '
._Q__lQ£§
Vi3 Opd 61)

which is identical to the result obtained for the light ballistic
missile (eq. (47)). This result applies, in fact, to all hyper-
velocity vehicles which lose the large majority of thelr kinetic
energy during atmospheric entry’.

The time. rate of average heat input per unit area is

obtained by dnxdmg equation (56) with the surface area,

thus vielding

dHe_
dt

3 @9
ZEN G

&

ICF 57"

=3 0, A LD Y o ((os ?—cos 8)e

Y
It can be shown that this expression has a peak value at a
point in the skip, 84, given by

(cos 6,—cos by) =%—Q sin 4,

or -
cos 8,

V)
From cquation (22) it can be concluded that the maximum

heat-transfer rate will occur in the first skip where 1 "=V
consequently, -

((IH,,,)
dt maz

sin~! 63

3
—_ -1
8,=tan D

308,—8,)
L/D

Bm Gy’

& C.A (64)

V7 sinb,.e
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The time rate of local heat mput per unit area in the
stagnation region of the nose is obtained by introducing

“equations (54) &nd (55) into equatlon (44) with the following

result:
30,9

) (cosa—cos 8) Ve LD

(65)

Equatlon (65) has a peak value at a pomt 6,in a sl\lp given

by
(cos 0,,—cos 6,) =L—é11)- sinf,
or ' ' ' o
7 8,=tan~! 6 sin™! cos b (66)
S LD

It is clear in this case also that the heat-transfer rate will
have its maximum value in the first skipping phase where
the velocities are highest. Since V,,=V, in the first skip,
equatlon (65) becomes - v '

|

1y

_3;{,_05)

Vie 7P (67)

Glide vehicle.—From equations (30) and (32), the density
at a point in the glide trajectory is found to be

a=Vphe

pozAVS! 1—(1—%’)8” (68)

where

J‘@@

'By substitution of equations (30) and (68) into equation

(39), the time rate of total heat input can be expressed as

Q 1 Cp S mng
dt 2 CDA LD

(1—'17,’)e’{1—<1—17,*>e']” (69)

If equations (30) and (33) are combined with this expression,
we again obtain

Q _1CS

ImVA 2 Cpd

for the heat transfer to a hvpervolocxt\ vehicle during atmos-
pheric entry.

Now the time rate of average heat input per unit area of
a glide vehicle is found by dividing equation (69) with the
surface area, thus yielding

(IHa,zl (’p’ mgVs

di A LD

(70)

1=Tpei—a=THe T

It follows from this expression that the maximum time rate

of average heat input per unit area is
. f

((JH‘,,) _ dH) 1 G mgVs -
At Jwaz N AL )5 313 Cod LD )
at a value J, given by

Jo=—In3(1-Tp (73)
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If J, is taken as a reference value, andlequations (71) and
(72) expressed in terms of J, and incremental changes
AJ=J—J,, it can easily be shown that

_GHudt  _ g oary
@HJd, " 2 Vi=EaD

The dependence of F,(AJ) on AJ is shown in figure 8.
The velocity at which the maximum average heat input
rate occurs can be obtained by substituting equation (73)
into equation (30) yielding

(74)

- 1 )
V=—"r
Equations (72), (73), and (74) apply, of course, only when
V2 (1A3). _ _

For cases when V,<(1/y3), the maximum time rate of
average heat input per unit area will occur at the start of
unpowered flight and is given by

(75)

12\ _(dH 1 O omgV, O
& )=\ ),ﬂ,o 20,4 Ljp 1~VAV: (79

The maximum time rate of local heat input per unit area
in the stagnation region of the nose is found by first substi-
tuting equations (30) and (68) into equation (44) to obtain

dH, 2 > - .
T =K\ Vell=0=VAU0=Tpeps  (17)
The maximum time rate is then
dH,\ _(dH, 2 2myg . .
).~z WaE VG e
oceurring at a value of ’J) given by
C SHh=—In3(1-Vp (79)
7 With J, as a reference, it can easily be shown that (
a1 S
G T e any ‘ 4

- where ) : .
, . .
AJ=JTJ1, -
The dependence of ¥,(AJ) on AJ is shown in figure 8,
With reference to equations (30) and (74) it can be seen
that the maximum time rate of local heat transfer in the
" stagnation region oceurs when

@6

It is apparent then that equations (77), (78), and (79) apply
only when V,>V2/3. For cases where V, S\'T/:S*, the max-
imum time rate of local heat Input per unit area will oceur
at the start of unpowered flight and is given by

(7).~ (i

/2 " 7 Soaig
=KL VeTra-Tae (s)

Jy=0

1.0

:8 Fia- / ‘ \
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Frcure 8. —Variations of Fa(aJ) and Fy(aJ) with AJ.

DISCUSSION

PERFORMANCE OF HYPERVELOCITY VEHICLES

In this study the point of view is taken that the perform-
ance of long-range hypervelocity vehicles is measured by
their efficiency of flight. Thus, for example, it is presumed
that the advantages (military and otherwise) of short time
of flight accrue equally to all vehicles. '

- The efficiency of flight is perhaps best measured by the
cost of delivering a given pay load a given range—the higher
the cost, the lower the efficiency. Quite obviously it is far
beyond the scope of the present paper to actually compute

- this cost. Rather, then, we adopt a more accessible param-

eter of hypervelocity flight, namely, the initial mass of the
vehicle, as a measure of cost. In effect, then, the assumption
is made that the higher the initial mass of a vehicle the
higher the cost and the lower the efficiency. With thesc
thoughts in mind, it is constructive to reconsider the basic
performance equation (eq. (4)) written in the form )

V//ﬂ’l

—~  m=me (83)

This expression clearly demonstrates the roles played by the
three factors which influence the initial mass of a vehicle
required to travel a given range. For one thing there is the
power plant, and as we would expect, increasing the effective
specific impulse increases the over-all efficiency of flight in
the sense that it tends to reduce the initial mass. The
velocity at burnout influences initial mass by dictating the
amount of fuel required, and it is not surprising that de-
creasing the required burnout velocity (e. g., by increasing

the L/D of a skip or glide vehicle) tends to decrease the

initial mass. Finally, we see that the initial mass is propor-

tional to the final mass which consists of the pay load, -
structure (and associated equipment), and coolant. If we .
presume the mass of the pay load to be some fixed quantity,
then the initial mass will vary in accordance with this mass -

of structure and voolant.

Now we assume for comparative purposes that the power
plant for one vehicle is equally as good as the power plant
for another vehicle—that is to say I, is a more or less Hixed
quantity. TIn this event it is permissible to restrict our
attention to two main performance considerations ; namely;

PR
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¢ the prescribed motion as it influences the required burnout
velocity, and the resulting aerodynamic heating as it influ-
ences structure and coolant. We therefore proceed to
discuss the comparative performance of long-range hyper-
. ‘velocity vehicles in terms of these considerations.”
) ‘Motion.—The dependence of burnout velocity Vyonrange
* was determined in the analysis of motion in unpowered
. flight and the results obtained for the several types of hyper-
velocity vehicles under study were presented in figures 1, 4,
and 6. Using these results in combination with the basic
performance equation we have calculated the corresponding
initial to final mass ratios mJm, as a function of range.
For these and subsequent calculations it has been assumed
that the rocket power plant develops an effective specific
impulse of 300 seconds. The results of these calculations
are presented in figure 9 and we observe that, in general,
the mass ratios are highest for the ballistic vehicle. The
glide and skip vehicles have comparable and relatively low
mass ratios at lift-drag ratios in the neighborhood of 4 and
greater. The skip vehicle is superior, however, to the glide
vehicle at lift drag ratios in the neighborhood of 2. From
considerations of motion alone, then, we conclude that the
skip vebicle and the glide vehicle developing lift-drag ratios
greater than 2 are superior efficiencywise, in the sense of this
report, to the ballistic vehicle. Let us-now determine how
these observations are modified by considerations of aero-
dynamic heating. : , :
Aerodynamic heating.—The analysis has revealed one par-
ticularly salient factor in regard to the heat transferred by
convection to hypervelocity vehicles that expend the
majority of their kinetic energy of flight in traveling through
the earth’s atmosphere. This factor is that the amount of
Kkinetic energy which appears in the body in the form of
heat is proportional to the ratio of friction force to total
drag force acting on the body (see egs. 47y, (61), and (70)).
With the possible exception of the relatively heavy ballistic
vehicle (see ref. 3) all of the hypervelocity vehicles treated
here do expend the major part of their kinetic energy in
flight. It is, in fact, only by virtue of this expenditure of
energy that the skip and glide vehicles achieve long range.
From the standpoint, then, of reducing the total heat trans-
ferred by convection, the problem is to determine how the
ratio of friction force to total drag force can be reduced.
This matter was discussed in detail in reference 3 in connec-
tion with ballistic vehicles and it was demonstrated that the
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Figure 9.—Variation of mass ratio with range for various lift-drag
ratios of hypervelocity vehicles.
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ratio could be reduced by. employing high-pressure-drag

(i. e., blunt) shapes. It would be most fortunate if this

avenue of solution were open also to the skip and glide

vehicles; however, it is readily apparent that such is not the .
case. This conclusion follows simply from the fact that the

skip and glide vehicles must develop reasonably high lLift-

drag ratios to achieve long range. But, as is well known,

high lift-drag ratios and high pressure drag are incompatible

aerodynamic properties. Evidently, then, the skip and

glide vehicles will be relatively slender and they will, by

comparison to blunt ballistic vehicles, be required to absorb

large amounts of their kinetic energy of flight in the form
of heat. On the basis of the calculations of reference 3, it

does not seem feasible for slender hypervelocity vehicles to

absorb and retain so much heat (of the order of one-tenth

the kinetic energy of flight). We are led, therefore, to con-

sider the possibility of radiating part or all of this heat back

to the atmosphere. )

Let us first consider radiation heat transfer from the sur-
face of a glide vehicle. For purposes of simplicily we pre-
sume & vehicle conical in shape. The base diameter is taken
as 3 feet and the weight as 5,000 pounds. We consider two
slender cones which, according to hypersonic theory including
friction drag, can develop maximum lift-drag ratios of 4 and
6 (see Appendix B). We find (see Appendix C) that the

L/D=4 glide vehicle can radiate heat like a black body at a
rate equal to the maximum average convective heat-transfer

rate if the surface temperature is allowed to rise to about -
1500° F. If the vehicle develops a lift-drag ratio of 6, then

the allowable surface temperature must be increased to

about 1800° F. These surface temperatures are high;.
nevertheless they are within the range of useful strengths of

available alloys (see, e. g., ref. 7). Furthermore, they can, if

necessary, be reduced somewhat by designing 2 less dense

vehicle (or, more specifically, & vehicle of lower wing loading,

W/S; see Appendix C). '

1t is indicated, then, that the glide vehicle has the attrac-
tive possibility of radiating back to the atmosphere a large
fraction of the heat transferred to it by convection. As a
result the mass of coolant required to protect the vehicle may
be greatly reduced. Just as with the ballistic vehicle, how- '
ever (see ref. 3), it is evident that additional means, such as
transpiration cooling, may be necessary to protect local hot
spots on the surface, like the stagnation region of the nose.
It is also well to note that the alleviating effects of radiative
cooling are not limited to the glide vehicle alone, but would
apply to any hypervelocity vehicle in level flight.

We inquire now if the skip vehicle is capable of radiating
leat at a rate comparable to the maximum convective heat-
transfer rate. For this purpose it suffices to confine our at-
tention to the first skip wherein the maximum convective
heat-transfer rates are encountered (see eq. (64)). Calcula-
tions of maximum average rates using equations (63) and
(64), for long-range skip vehicles developing lift-drag ratios
of 4 and 6, indicate that these rates are an order of magnitude
higher than those for comparable glide vehicles. The cor-
responding equilibrium surface temperatures of the skip
vehicles are the order of two or more times as high as those of
the glide vehicle. Accordingly they may be far in excess of
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3000° F.  We conclude, therefore, that long range, high /D
skip vehicles cannot radiate heat at a rate equivalent to the
maximum convective rate because the surface temperatures
required for radiation to offset convection would exceed the
temperatures at which known structural materials retain
appreciable strength (see ref. 7).

Now the skip vehicle operating at lift-drag ratios in the
neighborhood of 2 will absorb less heat than skip vehicles
developing higher lift-drag ratios. However, as shown in
Appendix C, the former vehicle still absorbs more heat than
a comparable high-pressure-drag ballistic vehicle and it ac-
crues no appreciable advantage by radiation. From the
standpoint of heat transfer, then, it is indicated that the
skip vehicle is inferior to both the ballistic and glide vehicles.
That is to say, proportionately more coolant of one form or
another would be required to protect the skip vehicle than
would be required to protect ballistic or glide vehicles of the
same range. The skip vehicle has other disadvantages as
well.  Certainly one of the most scrious of these is the very
high lateral loads (see fig. 3) that the vehicle would be re-
quired to withstand during a skip from the earth’s atmos-
phere. These loads, coupled with simultaneous high thermal
stresses (due to high convective rates), would require the
structure to be stronger and, consequently, heavier than that
of a comparable glide vehicle.’. For these and other reasons
concerned with problems of stability, control, and guidance,
the skip vehicle is thought to be the least promising of the
three types of hypervelocity vehicle considered here.

In essence, then, the preceding study has indicated that
the ballistic vehicle exhibits the possibility of being relatively
cfficient for hypervelocity flight by virtue of the fact that
aerodynamic heating can be markedly reduced through the
artifice of using blunt, high-pressure-drag re-entry shapes.
The disadvantage of using the relatively inefficient ballistic
trajectory is counterbalanced by this advantage which tends
to keep initial mass down by reducing coolant mass. The
glide vehicle appears promising for hypervelocity flight
because it has, coupled with the relatively high efficiency of
the glide trajectory, the possibility of radiating a large
fraction of the heat absorbed by tonvection. ,

. Up to this point we have considered the performance
efficiency of the several types of hypervelocity vehicle by
comparison with each other. It is of interest now to compare,
insofar as is possible, the efficiency of flight of these vehicles
with that of lower speed, more conventional type aircraft.

COMPARISON OF HYPERVELOCITY VEHICLES WITH THE SUPERSONIC
/ AIRPLANE '
In the analysis of powered flight it was found that the basic
performance equation for hypervelocity vehicles could be
written in a form analogous to the Breguet range equation.
Thus, according to equations (7) and (9), we have for both
hypervelocity and lower speed vehicles that

1
o L i m
R =(—- LV,In{=
: D/, m,
3 Added weight means, of course, added coolant (see, agaln, eq. (61)) and one can easlly

demonstrate that ultimately the coolant is being added to cool coolant. This situation must
obviously be avoided. .

(84)

where it is understood that the effective quantities are th
same as the actual quantities in the case of the lower speed
more conventional aircraft. Now let us consider the produc
(L/D) 1.V, Taking first the supersonie airplane we assum.
flight at a maximum lift-drag ratio of 6. The product I,V

.for a ram-jet or turbojet ean reasonably be expected to hav

a value of about 4.4 10° feet.* The product (L/D) I,V i:
then 26.4<X10° feet for the airplane. Now let us compar:
these quantities with the corresponding quantities for a
ballistic vehicle and let us presume that the range will be hali
the circumference of the earth. 1In this event, the effectiv:
lift-drag ratio for the ballistic vehicle is 27 (see fig. 2) which i-
slightly greater than that for the airplane, while the effective
velocity is just half the satellite velocity, or 13,000 feet per
second. Let us again assume that the effective specific
impulse is 300 seconds. In this case, the product of IV, ix
3.9X10° feet and the product (L/D),I,V, is about 24.5X 10
feet which is only slightly less than that for the supersonic
airplane. Thus we have our first suggestion that the hyper-
velocity vehicle is not necessarily an inefficient type vehicle
for long-range flight.

In order to pursuc this point further, a performance effi-
ciency factor (sce eq. (10)) definad as -

(L\p o 2 _
= (D),“Vs—ln(ﬂ>
m,

has been calculated for ballistic and glide vehicles for 1,=300
seconds, and ranges up to the circumferénce of the earth.
The corresponding quantity E has been calculated for the
supersonic airplane (7,V,=4.4<108 feet) for several lift-drag
ratios. The results of these calculations are presented in
figure 10 and we observe, as our example calculation sug-
gested, that both the ballistic and glide vehicles compare
favorably with the supersonic airplane for ranges in the
neighborhood of and greater than half the circumference of
the earth. The glide vehicle is again superior to the ballistic
vehicle at lift-drag ratios in excess of 2 and, as a result, it
compares favorably with the airplane at shorter ranges than
the ballistic vehicle.

It should be kept in mind, of course, that m, may be
substantially greater than mp, the mass of the pay load.
This point is significant because it reminds us that m,/mp,
and not m,/m,, is considered the better measure of cost.
Thus, noting that m,/mp=(m,/m,) (m;/mp), and recognizing
that m,/mp is probably lowest for the ballistic vehicle, we
anticipate that the ballistic vehicle would appear to better
advantage than shown in figure 10. )

(85)

CONCLUDING REMARKS AND SOME DESIGN CONSIDERA- -

TIONS FOR MANNED HYPERVELOCITY VEHICLES

During the course of this study it has been indicated that _

ballistic and glide vehicles can be operated at hypervelocities
with the reasonable assurance that problems of aérodynamic

¢ This value should bold approximately for any air-breathing engine—note that the maxi-
mum value of I,V is simply the product of the thermal efficlency (taken as 0.3—nee, e. g., ref.
8) and the specific heat content of the fuel (taken as 14.63¢ 104 feet for gasoline-type fuels).

-~
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Fioure 10.—Variation of performance efficiency factor with total range
for ballistic and glide vehicles and the supersonic airplane.

lieating can be largely alleviated by proper design. Skip
vehicles appeared substantially less promising in this as well
as other respects. 1t was further demonstrated that on the
basis of equal ratios of initial to final mass, the long-range
livpervelocity vehicle compares favorably with the super-
sonic airplane. These considerations suggest that the
ballistic and glide vehicles have, in addition to the advantages
usually ascribed to great speed, the attractive possibility of
providing relatively efficient long-range flight.

In view of these findings, it seems appropriate as a final
point to consider what appear to be favorable design features
of manned hypervelocity vehicles. It is fair to assume that
the glide vehicle has the man-carrying capability if suitable
living quarters are provided inside the vehicle, particularly
as regards composition and temperature of the interior
atmosphere. However, whether or not the ballistic vehicle
has this capability is not obvious and requires some clarifica-
tion. The principle question in this regard is the magnitude
of the decelerations experienced by the vehicle and its
occupants during atmospheric entry. Some light is shed on
this matter by figure 11 where the maximum deceleration in
¢’s of a ballistic vehicle is shown as a function of range.

60

40t

20

Maximum deceleration, G

1 P 1 | ! I J
0 | 2 3 4 5 6 7
Range parameter, -

Ficure 11.—Maximum deceleration of ballistic vehicles during atmos-
pheric entry.

‘drag penalty and thereby reduce the lift-drag ratio.
P
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These decelerations were calculated by the method of
reference 3 for large entry angles, and with equations (13),
(Cr=0) for entry angles near zero, using the velocities and

“entry angles as a function of range given by equations (12).

It seems reasonable to conclude from the results shown in
figure 11 that the decelerations are in excess of those humanly
tolerable except for very short range flight and for very long
range flight. The latter case is of principal interest to us,

_and it is noted specifically that maximum decelerations can

probably be kept to the order of 10 ¢’s or slightly less for
ranges of the order of semiglobal and greater. Tt may be
remarked further that decelerations exceed 5¢'s for less than
a minute, and they exceed 1 g for not more than about 3
minutes. In this respect, then, (see ref. 9) the ballistic
vehicle appears to be a practical man-carrying machine,
provided extreme care is exercised in supporting the man
during atmospheric entry. From the aerodynamic heating
point of view the ballistic vehicle can, of course, be made
especially attractive by employing the blunt body concepts
of reference 3. P -
The glide vehicle experiences maximum decelerations in
¢’s equal to approximately D/L (see eq. (31) and note
D/W—D/L as V*-0), and so with any significant lift-drag
ratio it is far superior to the ballistic vehicle in this respect.
In addition, the glider has the important advantage of

" maneuverability during atmospheric entry. These factors

and its potential for relatively high performance efficiency
make the glider generally attractive as a man-carrying
machine. _ § : -

It will be assumed that if the glider is to develop reasonably
high lift-drag ratios it should be slender in shape. But the
nose of the body and the leading edges of the wing (and tail
surfaces) should be blunt to alleviate the local heating prob-
lem. Blunting the nose of the body may not, if properly
done, increase the drag of the vehicle (see refs. 10 and 11).
Blunting the leading edge of the wing will, however, incur a

difficulty may be largely circumvented by sweéping the lead-
ing edge of the wing. The contribution to total drag of the
drag at the leading edge is, according to Newtonian theory,
reduced in this manner by the square of the cosine of the
angle of sweep for constant span. The question which arises
is how does sweep influence heat-transfer rate. The nature
of this influence (ref. 6) is shewn in figure 12 and it is ob-
served that sweep decreases heat-transfer rate very substan-
tially, although not to the extent that it decreases drag.
We are led then to the conclusion that the wing on & hyper-
velocity glide vehicle which develops reasonably high lift-
drag ratio should have highly swept leading edges. This
observation coupled with the fact that wing weight should
be minimized suggests for our consideration the low-aspect-
ratio delta wing. In addition to the wing it is anticipated

that & vertical tail will be needed to provide directiongl

stability and control, and so we are led to imagine as one
possibility a hypervelocity glider of the type shown in
figure 13. !

The potential of the glider to have relatively high per-
formance efficiency hinges strongly on the finding that the
large majority of the heat convected to it may be radiated

This -
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Figure 12.—Effect of sweep on drag and heat transfer to circular
cylinders.
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Figure 13.—Example high lift-drag ratio glider.

away at reasonably low surface temperatures. But it is
never possible to build a perfect radiation shield. There is
always a certain amount of heat which leaks through the
shield to the internal structure. As the duration of flight
increases this heat leakage problem may assume major pro-
portions if substantially more structure (or coolant) is re-
quired to absorb the heat. If, at the same time, the action
of aerodynamic forces has, at best, & minor influence on
range then the high lift-drag-ratio glider may cease to be an
attractive machine. For flights approaching global range
these two factors tend to come into play. That is, flight
time becomes relatively long (of the order of an hour and
8 half or more) with the attendant increase in seriousness of
the heat leakage problem, while lift-drag ratio assumes a

relatively minor role in terms of performance efficiency (see
fig. 10). Accordingly, it may be attractive to launch a global
glider into a low altitude satellite orbit which it follows over
the large majority of its range and from which it enters the
atmosphere in the terminal phase of flight to glide the short
remaining distance to its landing point. Under these cir-
cumstances, the vehicle may be designed to minimize aero-
dynamic heating during atmospheric entry and for this pur-
pose we are attracted to the use of high lift 5 as well as low
wing loading (see eqs. (76) and (77)) to reduce heating rates
and surface temperatures. Accordingly, the vehicle may
glide into the atmosphere at a high angle of attack for high
lift coefficient, maintaining this attitude until speed has been
reduced to a supersonic value where heating has become a
relatively minor problem. The angle of attack may then be
reduced to increase L/D, thereby extending the glide and
“increasing maneuverability to achieve the desired landing
point. For this type of application the vehicle might have
more of the appearance shown in figure ‘14, again being of
the delta-wing plan form but having a more or less rounded
bottom and sides to minimize heating rates over the leading
edge as well as the entire lower surface during re-entry.
Such a configuration bears a resemblance to a motorboat
and it may in fact be suited for landing on water as shown,

AMES AERONAUTICAL LABORATORY
NATIONAL ApvIsory CoMMITTEE FOR AERONAUTICS
Morrerr FieLp, CaLir., Dec. 10, 19564

5 High life tends, of course, to mean Increased decelerations hecause of reduced L/D during
atmospheric entry: however, even for Z/D's of the order of unity these decelerations remain
modest and they should not, therefore, constitute a serious piloting problem.
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. APPENDIX A

SIMPLIFYING A$§IiJ,MPTIONS Il‘ﬂ ?‘HE ANALYSIS OF THE GLIDE TRAJECTORY
ot e M : .

The assumption of small deflection angle (8<<<1) was

used throughout the study ‘,of the glide trajectory. In

addition, equation (28) was 'sin?pliﬁed on the assumptions
that e '

(LiD)I< <1 (A1)
and -
dé L/D dV?
V<<T & (A2)

The extent to which these assumptions are permissible can
be checked by deriving an expression for (L/D)6 and exam-
ining its variation over a range of trajectory parameters.
From equations (15), (30), and (31) the altitude of anry
point in a glide trajectory is found to be ’

_l l—(l_ij)eJ 1—'Tj;zrﬂ-r“ :
v=3 {ln [———(I—V,—F’)e’ ]+ln [—————Vzr"o | (A3)

By retaining the assumption of small inclination angle,
whereby 8= —dy/ds, and recalling that J=(2s/r,)/(L/D), we
find the inclination angle by differentiating equation (A3).
Performing this operation and making use of equation (30)
reduces the expression for (L/1)6 to

L,_2 [__,L.__]zw5_><10—3
DA i—a-Tpel T -

Since V2 becomes very small toward the end of the trajectory,
it is apparent from cquation (A4) that the assumption of
small (L/D)8 cannot be justified in this portion of flight.
The problem then is to determine the conditions under
which (Z./D)8 remains negligibly small over the major part
of the trajectory.

With the aid of equations (30) and (33), equation (A4)
can be modified to the following form

(A4)

S S
1— 2/Bro ]
(L/D)8
For given values of L/D and total range &, equation (A5)
Jetermines the fractional part of the total range which cor-
responds to a given value of (L/D)6. Since the deflection
angle is always increasing, we can therefore determine the
portion of the total range through which (L/D)# remains

equal to or less than a given value. A computation of this
16

¥ In

D
=17 2% (48)

nature was performed for a value of (1/D)8<0.05, and the
results are presented in figure 15. From this figure we can
see that except for short ranges and large lift-drag ratios,
(1./D)8 (as well as 6) remains at a value less than 0.05 for
better than 90 percent of the total range. '

The second assumption, cquation (A2), can also be verified
from the results of the analysis. By differcntiation of equa-
tion (A~4) we find that -~

Ldo_ave Ta-Vpe
v o T (49
.W]li]é differentiation of gquation (30) yields

) 21—V 2 .

Dividing equation (A6) by equatiornr (A7), and making use
of equation (A4), we find that -

: pad?
ds 26 2 .
2= = [(L/D)] (A8)
1 dvr _(L/D) (€.jD)? ¥
2 (1D gy

By comparing cquation (A8) with the previous results ob-
tained for (L/1)6 (fig. 15), we can readily see that the assump-
tion of cquation (A2) is actually less stringent than that of
cquation (A1) for values of LD of the order of 1 and greater.
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Ficure 15.—Portion of range where (L/D)8<0.05 as a function of
range for various values of lift-drag ratio.
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APPENDIX B

Cr'S

THE RELATION BETWEEN ——= AND

CpA

The lift and drag coefficients for slender cones at small
angles of attack can be expressed in the following manner:

(1=2a (B1)
Cp=Cp +al, (B2)
from which it follows that the lifi-drag ratio is
O, ~
L L (B3)

4_ - — <L
D Cp+al,” (L, +C2 -

It can be shown that equation (B3) has a maximum value
when ] - '

Cp, =022 (B4)
whereby )

~ (Co)asmy,,, =205 -(B5)

@

Using equations (B1) through (B5), one can express the
maximum value of the lift-drag ratio in the following ways:

L 1 1 1
(5 S P T (B8

The drag coefficient at zero angle of attack appearing in
equation (B2) can be broken down into its component parts
to yield - . -

C Com (), 4 0nSIA
where ((p,), is the zero-lift pressure drag coefficient and
Cr, is the zero-lift skin-friction coefficient hased on wetted
area. The skin-friction coefficient (%, in equation (B7) can
be related to the equivalent skin-friction coefficient (Y (see
eq. (43)) by considering average conditions over the surface
of the cone. Equating the friction drags as determined

from free-stream ‘and local average conditions, it is found

that

Cp.= (C")“ (Pl)av(v’l):;_lv (BS)

pV? ,
By referring to local average conditions on the body sur-
face, the expression for Cp’, equation (40), can be written as

C=(C,, T

pV (B9)

Comparing equations (B8) and (B9) it is apparent that
Via
O, =0y File (B10)

For slender shapes at hypersonic speeds, the local velocity
does not differ appreciably from the free-stream value.
Also, for small angles of attack, the skin-friction coefficient

(B7)

(£> FOR CONICAL MISSILES
D max

should remain fairly constant. Consequently, equation
(B10) can be written as
Cr,=Cr=CF'=constant (B11)
and equation (B7) then becomes
Ce’'S
Cp,=(Cs,),+ ;1 (B12)

From equations (B5) and (B12) it can then be shown that

C'S _1 l_(ffo,,),
Cod )by, 2 Cp,

From the Newtonian impact theory, the zéro-lift, pressure
drag coefficient for slender cones at hypersonic speeds can
be expressed as -

(B13)

((p,), =28 (B14)

where ¢ is the semivertex angle of the cone. By further
noting that for slender cones’ :

1
equation '(BIZ) then becomes
(*,,_:25*4—%’- (B16)

For a given value of (%' it can be shown that equation
(B16) has minimum value when®

[N ]

whereby, at §=3,,,

(Co.) mn=8805=3(C),

(B17)

(B18)

Obviously, then, the highest value of maximum lift-drag
ratio (eq. (B6)) will be attained by the cone with the semi-
vertex angle given by equation (B17). By substitution
from equation (B18) into equation (B6), the optimum value
of maximum lift-drag ratio is found to be

By further subsbitufing _the expression for minimum
zero-lift drag: coefficient, equation (B18), into equation

¥ The remaining analysls assumes Cp’ constant. Although this is certainly not the
situation in practice, the analysis provides an “ order of magnitude” estimate of pertinent
parameters, :

-h .
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(B13), the following relation, corresponding to the condi-

tion of optimum maximum lift-drag ratio, is obtained:
Cr'S 1

et il —— B20
CoA /LDy 3 (B20)

With the aid of equations (B14) and (B16), equation
"(B13) can also be expressed in the following form, cor-
‘responding to any maximum lift-drag ratio including the
optimum value:

'S 1 1
S 11 (B21)
CoA J @010 s 2( ﬁ)

1+253

From equations (B20) and (B21) it can readily be seen that
in the case of the optimum (L/D)mq:

Cy’
2805

1

=2 (B22)

from which it follows directly that
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and it follows directly from equation (B19) that the ratio
5 0f (L/D)ma: for any cone to that for the optimum cone is

| g ﬂ=a—‘:3ﬂ [1+2 25‘3—,')3]% (B26)

where 7 is defined as the “lift-drag efficiency factor.” By
substitution from equation (B24), the ratio of (L/D) ez to the
optimum value can then be expressed in terms of (Cp'S|CpA)
as follows:

B CoSNE (., G SV
=3 (1) (1254

The dependence of 5 on Cy'S/CpA is shown in’ figure 16.
It should be noted, however, that for smalil values of 5 the
assumption of slender cones will be violated, although the
results as shown will be qualitatively correct in that Cx'S/CpA
will become exceedingly small for low values of (L/D)maz,
regardless of body shape. '

.(B27)

1.0

o s 3 7 .533
Cr o (Port ©
s 2( ; ) ®23) | = _ A
. C 8 /
so that equation (B21) may be written as ~.6 )
3
CP,S> 1 2 /
= = B24 2
Cod /(LD mes KRN 524 54
24+ -
607‘ E
T2
With the aid of equations (B16) and (B23), the expression b
for any (L/D)me: (eq. (B6)) can be shown to be o =5 = = <5 2o
) - Drag porameter, GES/CpA
B =T (B25) o | o
maz o5l 142 (‘&g)] Ficvre 16.—Variation of lift-drag efficiency factor with drag param-
é eter for cones. .
APPENDIX C

COMPUTATION OF HEATING ASSOCIATED WITH ROCKET VEHICLES

RADIATION OF HEAT FROM GLIDE VEHICLES

From equation (72), the maximum time rate of total heat
input to the glide vehicle can be expressed as

(0.~

The rate of heat radiation from the vehicle is given by the
relation

mng

3+/3(L/D) ©D

dHpg

Sdt

=kTx'S (C2)

Using equations (C1) and (C2), the requirement for con-
tinuous radiation of all convective heat input to a surface
at a temperature 2000° R can be expressed as

mg_ Cr'S oy o

STD) CoA = (€3)

If a value of (L/D)mar=06 is assumed, values of the para-
opt

4
meter Cs’S/CpA and cone angle, 8, can be determined as &

function of (L/D)me: from the analysis given in Appéndix B.
A vehicle weight of 5000 pounds with a maximum diameter
of 3 feet is assumed whereby equation (C3) can be evaluated
for various (L/D) giving the results in the following table:

LD Cr'S|CoA 3, S, |_m_ CrS
deg sqft 1"S(Z/D) Cod
¢ 0.333 2.75 | 17 189
4 . 0600 6.73 60.2 124
2 100710 143 28.6 L6810
1 - 000880 2.8 4.3 312
3 - 000115 55.8 8.55 o135

We see, therefore, that at surface temperatures of 2000° R
and for an L/D of 4, this glide-type vehicle can radiate heat
at a rate equal to or greater than the maximum convective
heat rate. :

RADIATIVE AND CONVECTIVE HEAT TRANSFER‘ ASSOCIATED WITH SKIP
VEHICLES :

In this section the problem is to determine the extent to
which heat absorbed by & skip vehicle in the first skipping
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phase can be reradiated during the subsequent  ballistic
phase. The quantity of heat absorbed in the first skipping
phase has already been obtained in the heating analysis,
(eq. (59) for n=1)

Q _16’8 _&)
%mV;‘—z CDA l_e L/D

where the total heat absorbed throughout the entire trajec-
tory is . :

(Ce)

. @ _108
/ L Tmve A (©3)

In order to determine the heat radiated, three quantities
must be determined: -
1. Temperature of the vehicle at the start of the second
ballistic phase
2. Temperature of the vchicle at the end of the second
ballistic phase '
3. The time duration of the second ballistic phase
To determine the first of the above quantities, we employ
the relation for heat absorbed -

Q=cW AT (Cs)

where ¢ is the specific heat of the material, W, is the effective
weight of material absorbing heat, and AT is the tempera-
ture rise during the first skip. If it is assumed that 1/3 of
the missile weight will absorb heat, equation (C6) becomes

=3 (&
| ar=2 (%) (o)
where m is the total mass of the vehicle. It is assumed that
" the material has a specific heat of 0.11 Btu/lb °R. If it is
also assumed that the temperature at the start of the first
skip is 500° R, equation (C7) becomes
T,,,=500+1.1%10-3 (%) . (C8)
which defines the temperature at the beginning of the
second ballastic phase. ' ] -
To find the temperature at the end of the second ballistic
phase, we equate the radiant heat-transfer rate from the

body to the rate of heat loss in terms of the temperature
drop of the body

—kT*S dt=cW.dT (C9)
This expression can be integfated to yield
T, b= L (C10)

(7.95X 10981475
&y

for a vehicle weight of 5000 pounds (effective absorbing
weight of 1667 pounds) where T.n, is the temperature at

the end of the second ballistic phase and ¢ is the total flight
time of the second ballistic phase. The total heat lost by
radiation can now be expressed in terms of the temperature

drop as
QRg_—_ (Tczg_ Tuz) ch

Qz,=141X10T,;,—T.,,)

or

(C11)

The time of flight in any ballistic trajectory can be shown to

be

(1-em2) i

—CoS — <
2r, 2/ 2 - 1+ d
t—V, o= [tan.o,-{- \/-1—_"" tan ( 1= tan Z)]
- (C12)
where
= tan @,

. P $
sin 2—+tan 8, cos >

-§=tan“ sin §, cos 6,
——— 2
7 cos? 8,

The foregoing relations were applied to a computation of
the radiative cooling of a missile weighing 5000 pounds and
traversing a total range of 3440 nautical miles (¢=1.0).
Values of 8, were obtained in the motion analysis, and values
of Cp’S/CbA and S obtained in the previous calculation
with regard to the glide missile will apply to this case also.
The computations are summarized in the following table.
Note that the case of L/D=¥ is essentially the ballistic
vehicle (see fig. 9).

LD | o | VP | @x10 | Quar | 4 | Tep | Tep | Qux10 | Qrya
deg sec °R | °R 1 /
8 12.5 | 0.275 3115 0.135 213 2710 1490 1725 0. 55¢4
4 | 170/] .38 1470 258 | 335 | 1842 1323] atg .21
2 24.0 . 525 349 875 385 889 885 p14 . 049
1 | 2rs| ‘& 12 853 | 247 a7 | 585 3 023
Y| 30.0| .es0 19 85 s0.4| 514 14 o |o

~

We see, therefore, that the quantity of heat which must
be absorbed by this skip vehicle decreases rapidly with
decreasing lift-drag ratio. The quantity of heat which must
be absorbed by a ballistic vehicle (L/D=1/2) is almost
negligible compared with the quantities associated with
vehicles with an L/D=2 or greater. Comparison of the heat
absorbed in the first skipping phase with the heat radiated
in the second ballistic phase indicates no appreciable ad-
vantage is obtained due to radiation for values of L/D=2
and lower. To be sure, this situation could be substantially
altered (near L/D=2) by allowing the surface temperatures
to reach higher values during the skip; however, it seems
unlikely that the net heat absorbed by the skip vehicle
could ever be reduced to the low value of the ballistic vehicle
for any reasonable surface temperature.
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